Micron 96GB DDR5 RDIMM, when less can be so much more

Same performance but costs 50% less than 128GB 3DS RDIMMs

When is 96 greater than 128? When it’s Micron’s new 96GB DDR5 RDIMM vs 128GB 3DS RDIMM. The new 96GB RDIMM offers equal performance — but delivers more value at a 50% lower cost¹ using a single die package (SDP).

It’s no secret that big data is surging and will only grow more in the future. Yet data center system administrators are forced to maintain a balance between gaining the highest performance possible and maintaining the lowest cost. For the highest performance, system administrators will assume 128GB 3DS RDIMMs would be the best solution, but those modules are not cost effective. They don’t realize Micron’s new 96GB RDIMMs can step into the gap and give system administrators the same performance for a greatly reduced price.

Best for

Artificial intelligence Data mining Predictive analytics Intensive simulations

Key features

• Increase performance by up to 85% over DDR4²
• Introducing speeds of 5,600MT/s
• New higher RDIMM density of 96GB
• Optimized for the latest Intel® and AMD® server and workstation platforms
• 3-year limited warranty³
• 100% component and module tested
• Operating voltage reduced from DDR4’s 1.2V to 1.1V
• Manufactured by Micron®
• Available in RDIMM, ECC UDIMM and ECC SODIMM

Micron 96GB Server DRAM DDR5
Adding to the challenge data centers face is the fact that they consume approximately 3% of the world’s electricity and are expected to need 8% by 2030. At that point, electricity consumption will be dependent on availability and restrictions. Even so, AI, data mining, predictive analytics, and intensive simulations will be needing more. Do we also have the solution to consuming less electricity? Yes!

Again, this is where Micron 96GB RDIMMs are better than 128GB 3DS RDIMMs. They share the same optimized performance (within 10%), while decreasing power needs by up to 24%.

Why do 96GB RDIMMs score higher in comparison to 128GB 3DS RDIMMs? While the 96GB RDIMM is assembled as a 24Gb single die package (SDP), the 128GB 3DS RDIMM is based on two 16Gb three-dimensional stacked (3DS) die. It’s well known that 3DS RDIMMs come with drawbacks, including the fact that they are more complex to produce and have lower yields. Both factors drive the price up. In comparison, 3DS RDIMMs also have a higher memory latency, which can slow overall performance.

<table>
<thead>
<tr>
<th>Package</th>
<th>SDP</th>
<th>3DS (2H)</th>
<th>3DS (4H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max RDIMM Capacity</td>
<td>96GB</td>
<td>128GB (2H) or 265GB (4H)</td>
<td></td>
</tr>
<tr>
<td>Latency</td>
<td>Lower than 3DS</td>
<td>Higher than SDP</td>
<td></td>
</tr>
<tr>
<td>Cost/Gb</td>
<td>Much lower than 3DS</td>
<td>Much higher than SDP</td>
<td></td>
</tr>
</tbody>
</table>

Micron’s 96GB RDIMMs provide enough capacity for computationally intensive applications with the lowest TCO compared to 128GB 3DS RDIMMs. They’re 50% less expensive. And use 24% lower power. There’s no need to look elsewhere when Micron 96GB RDIMMs are capable of accelerating the most bandwidth-hungry workloads.

Learn more at https://www.microncpg.com/serverDDR5